Cooperation, institutional quality and management outcome in community based micro hydro schemes in Kenya

> Mary Karumba University of Cape Town

Sup: Prof. E. Muchapondwa

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

# Background

- ▶ Sub-Saharan Africa has the lowest electrification rate at 32 per cent compared to world access rate of 83 per cent
- ▶ Inequality (urban rate=59%; rural rate=7%)
- Development challenges related to use of unclean fuels are therefore likely to be more in this region
- Economics of grid extension (low income; scattered households)
- sustainable development goals have led to promotion of other alternatives
- Decentralized renewable (\_\*) energy micro grids (community owned micro hydro grids)
- registering low success rates (Palit and Chaurey, 2011 among others)-where they are needed most
- Ownerhsip and operation structure of community owned micro grids has specific challenges that make them difficult to run

# Background...

- Wolsink (2012) among others state that community micro grids have properties of a man-made CPRs
- Hardin's tragedy Hardin (2009) vs self governance conditions-Wade(1987); Ostrom(1999)
- emerging role of individual heterogeneity (characteristics) on participation -Lise(2000); Dolisca(2006); Coulibay-Lingani(2011) among others
- ► Greacen (2004); Maier (2007); Gollwitzer (2014&2015) characterization of the CPR in CBMHs
- ► Gap 1: prospects for individual cooperation within CPRs is widely assumed in both literature and practice- yet they are the basic units
- ► Gap 2: no link between suggested principles of governance and the observed outcome in CBMHSs
- ► We expolit field data from collpased and successfull CBMHSs in Kenya to establish such a link.

## Objectives of the study

- 1. Identify individual characteristics that influence individual's cooperation
- 2. Establish the role of suggested conditions for managing commons relate to the observed outcome (particular interest in the role of local institutional quality)

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

### Context

- ▶ Kenya (national rate 20%; urban rate 60% and rural 7%)-rural communities need affordable alternatives (even with grid electricity)
- Available setting for a potential hydro micro grid project (established resource; familiarity of respondents with technology; interest)
- Energy Policy-liberalized production and distribution of electricity
- ► **Communities** and private individuals allowed to exploit <1MW

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

▶ with communities so far showing greater interest

## Context

- Resource (labour and capital) pooling for construction and maintenance
- ► Joint ownership of the micro grid and generated electricity that is utilized at the household point
- limited capacity is common due to capacity/financing constraints
- rules stipulating the utilization of electricity (to prevent overload) and other conduct in the scheme
- ▶ 50 per cent of such start ups have failed due to among others- failure of self-governance
- Potential policy gap -Scheme formation & survival largely left to clueless community with donors/GoK handling financing

# Contribution

1. literature: we extend the application of CPR management principles to man-made energy commons

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

2. policy: potential interventions likely to increase the cooperation of members and positive outcome within CBMHS

# Methodology-Conceptual Framework



Adapted from Ostrom (2010)

# Empirical strategy

- suggested individual characteristics influence the level of cooperation with local scheme rules and regulations
- ▶ we use a simple LS estimation to identify what characteristics are supported by our field data
- In the second stage, we look for the conditions (predictors) of management outcome observed in schemes
- ► The relevant conditions for micro hydro CPR are suggested in exploratory studies [Greacen (2004); Maier (2007); Gollwitzer (2014&2015)]
- our interest quality of locally devised institutions & individual coperation on the outcome, while accounting for other relevant conditions
- Institutions refer to recognized rules to direct smooth conduct of business in a scheme that are common in micro hydro schemes
- note: cooperation and local institutions are depicted by several indicators constructed from concepts depicitng them in the data

# Empirical strategy-Objective 1

- ► LS estimation (with necessary tests)
- Indexpart<sub>i</sub> =  $\beta_0 + \beta_1 educ_i + \beta_2 enviclub_i + \beta_3 memtenure_i + \beta_4 trust_i + \beta_5 enerexperatio_i + \beta_6 incentive_i + \beta_8 wattsphh_i + \beta_9 gender_i + \beta_{10} landacr + \beta_{11} schemecode_i + \varepsilon_i$
- ► A coopertive member is defined as one who fulfills several requirements as follows:
- ▶ These can be combined into one variables (PCA) giving an indicator of individual cooperation level

| Notation  | description                     | Type  |
|-----------|---------------------------------|-------|
| billset   | meets financial contribution    | scale |
| freelab   | meets free labor contribution   | scale |
| infrep    | providing information           | scale |
| Patpatro  | Patroling to guard plant        | scale |
| decpat    | participating in decisionmaking | scale |
| meetatted | attending to scheme meetings    | scale |

< ∃ ► = < < <

Table: variables comprising of participation in the group

# Empirical strategy-Objective 2

- governance conditions and observed (binary) outcome in a micro hydro scheme
- Local institutional arrangements comprises of various concepts as follows (PCA)

| Variable          | Description                    | Type   |
|-------------------|--------------------------------|--------|
| lowcost           | low cost justice system        | binary |
| apprules          | Appropriation match generation | binary |
| leaderacou        | leaders are accountable        | binary |
| gradpenal         | graduated sanctions            | binary |
| $rules\_adjusted$ | adjustment of rules            | binary |
| rulesenforce      | rules are easy to enforce      | binary |
| rules_understand  | rules are easy to understand   | binary |
| rules_making      | are the rules locally devised  | binary |

#### Table: Variables for Institutions

# Empirical strategy-Objective 2

- binary outcome model with the probability of observing a scheme management outcome as follows:
- ▶  $p = pr[s = 1|C] = F(C'\alpha)$  with s=1 if scheme is functional and 0 otherwise
- $\blacktriangleright$  where C are the conditions (explanatory variables) and  $\alpha$  are the coefficients
- ► assume that  $S_{ni}$  takes on the value 1 with a prob  $\pi_{ni}$  or 0 with prob- then S follows a Bernoulli distribution
- ►  $Pr(S_{ni} = s_{ni}) = \pi_{ni}^{s_{ni}} (1 \pi_{ni})^{(1 s_{ni})}$  with  $\pi_{ni} = C'_{ni} \alpha$ , where  $\alpha$  represents regression coefficients. Empirically,
- $\pi_{ni} = \alpha_0 + \alpha_1 \text{Insindex}_{ni} + \alpha_2 \text{Indexpart}_{ni} + \alpha_3 \text{inequality}_{ni} + \alpha_4 \text{externalfund}_{ni} + \alpha_5 \text{groupsize}_{ni} + \alpha_6 \text{boundary}_{ni} + \alpha_7 \text{resourcesize}_{ni} + \alpha_8 \text{monitor}_{ni} + \alpha_9 \text{interfere}_{ni} + \alpha_{10} \text{socialcapital}_{ni} + \eta_{ni}$
- odds expression $\rightarrow$ logit/logodds transformation $\rightarrow$  assume that logit of underlying probability is a linear function of *C*

# Sampling and Data collection (Kenya (Nov-Dec, 2015)

- List of functional and collapsed schemes was obtained from a scoping study by Global Village Enterprise Partnership(GVEP) International
- ► Updated with personal visits to the projects by the researcher (approximated 746 members spread in 4 functional and 5 collapsed ones)
- targeting a third of the members in each group, a proportional allocation of the sample was done based on the total membership
- ▶ This was adopted because the membership became difficult to establish for some schemes
- ▶ The expected and realized samples are shown in tabel
- systematic pick of names from existing registers or using physical location and skipping nth member
- Both individual level and group level information was collected
- ► Group level information was through focus groups through randomly selected members

# Results:Some Sample Characteristics (mean)

| scheme( status)    | 0(0)        | 1(0)        | 2(1)         | 3(1)        | 4(0)     | 5(1)     |
|--------------------|-------------|-------------|--------------|-------------|----------|----------|
| age                | 55.9285     | 54.2500     | 53.5882      | 62.7143     | 49.65217 | 62.2973  |
| yrseducation       | 8.7857      | 10.8750     | 9.7059       | 7.5714      | 8.5217   | 6.8378   |
| yrs in village     | 43.8571     | 42.75       | 41.7059      | 58.1429     | 35.6087  | 51.1351  |
| landacr            | 1.4643      | 1.1746      | 1.2959       | 1.5928      | 0.8349   | 2.1301   |
| income (Ksh)       | 23598.93    | 16683.82    | 17209.82     | 10152.14    | 22707.09 | 17976.82 |
| imput_inco (Ksh)   | 10371.43    | 13962.5     | 15074.53     | 4428.571    | 14621.74 | 15190.54 |
| Eexpratio          | 0.0496      | 0.0792      | 0.1087       | 0.1087      | 0.0965   | 0.0825   |
| Group level inform | ation       |             |              |             |          |          |
| gender ratio       | 0.20        | 0.44        | 0.50         | 0.00        | 0.22     | 0.14     |
| group age(yrs)     | 10          | 12          | 5            | 10          | 0.7      | 7        |
| reso~ size(kw)     | 3           | 1.1         | 11           | 1           | 10       | 11       |
| group size         | 76          | 150         | 70           | 150         | 25       | 60       |
| ins_index          | 0.84        | 0.13        | 1            | 0           | 1        | 1        |
| part_ level        | 0.81        | 0.65        | 0.80         | 0.82        | 0.51     | 0.77     |
| n=236 mean inst    | i_index=0.6 | 7: mean par | ticipation_i | ndex=0.68 : | 1 USD= K | sh. 100  |

# Results: How do individual characteristics relate to observed level of cooperation

| Variable                     | coefficient(s.e.)      | $coefficients(Bootstrap \ S.E)$ |
|------------------------------|------------------------|---------------------------------|
| Education level (yrs)        | 0.1128(0.0437)***      | 0.1128(0.0425)***               |
| Membership to envir. club    | 0.6215(0.4307)         | 0.6215(0.4616)                  |
| yrs of membership in scheme  | 0.0969(0.0852)         | 0.0969(0.0788)                  |
| Trust for peers              | $2.6742(0.6275)^{***}$ | $2.6742(0.6617)^{***}$          |
| Energy share %HH budget      | 5.4181(2.0304)***      | 5.4181(2.0698)***               |
| Incentive(grid connection)   | 0.6830(0.6075)         | 0.6830(0.5935)                  |
| watts/hh                     | 0.0191(0.0059)***      | 0.0191(0.0062)***               |
| Gender(male)                 | -0.4917(0.4145)        | -0.4917(0.3890)                 |
| Asset ownership (Land acres) | -0.0189(0.0813)        | -0.0189(0.0840)                 |
| Scheme3                      | 2.7126(1.0620)***      | 2.7126(1.1630)**                |
| Scheme4                      | -2.2477(0.7994)***     | -2.2477(0.8450)***              |
| Scheme6                      | 3.2028(1.1103)***      | 3.2028(1.1211)***               |
| k                            | 2.0101(1.000)***       | 2.0101(0.9399)**                |
| n                            | 236                    | < 236 -                         |

# Results: Diagnostics #1



(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

# Results: Which suggested conditions matter for CBMHS outcomes?

#### Table: Predictors of successful management of a scheme

| Variable          | logit-coeffic $(s.e.)$ | m.e. (at means)    |
|-------------------|------------------------|--------------------|
| Institutional_ind | 1.6904(0.8495)**       | 0.4226(0.2124)**   |
| Participation ind | 3.0816(0.5761)***      | 0.7704(0.1440)***  |
| Asset inequality  | 45.7784(12.2655)***    | 11.4446(3.0653)*** |
| External_funding  | 0.4085(1.4898)         | 0.1014(0.3638)     |
| group size        | 0.0496(0.0128)***      | 0.0124(0.0032)***  |
| Boundary of users | 7.3115(2.0511)***      | 0.9478(0.0507)***  |
| Resource_size     | 1.1857(0.3434)***      | 0.2964(0.0858)***  |
| k                 | -64.3262(12.1189)***   |                    |
| log-likelihood    | -25.9310               |                    |
| Pseudo R^2        | 0.8413                 |                    |

\*\*, \*\*\*significant at 5% and 1% respectively

# Results #1

- argument individual characteristics indeed affect peoples cooperation scores in CBMHS
- ▶ Less educated members have lower scores, due to difficulties conceptualizing the benefits
- ▶ Similar findings for participants in forest commons (Jumbe, et al., 2007 & Dolisca et al., 2006)
- those who trust their peers have higher scores experimental studies support this the same in grazing commons Hayo et al. (2012)
- ▶ Trust increases confidence making individuals to commit more to scheme activities/laws- trust building activities in groups?
- Members in schemes with higher electricity allowance per member (benefits) have higher cooperation scores- invest in larger plants
- ▶ see Coulibay et al., 2011 & Muchara et al., 2014 for similar observations in forest and irrigation commons respectively

# results #2

- ► A higher score (quality of local institutional arrangements increases the probability of a successful scheme (m.e=0.42)
- Community development workers should aid schemes to improve the nature of institutional arrangements
- identified what constituties these local institutional arrangements for CBMHS through the concepts comprising this index
- even greater role of member cooperation (m.e. =0.77)
- driving forces are now partially known from the concepts comprising this index
- Educating participants on the linkage between their individual actions and subsequent outcome should be consistently emphasized

# Results #2 ...

- this should form part of the mobilization/promotion plans for such schemes
- ▶ Further, there is less worry over high inequality among scheme members, holding all other factors constant (schemes appeal to even asset rich households)
- Larger groups sizes should be encouraged together with exploitation of max. capacity from the hydro resource since they are associated with higher chances of survival of schemes
- During early project studies, its crucial to clearly define the community members who can or cannot benefit from the CBMHS electricity.
- This reduces conflicts in the future when additional members like relatives want to join in-which may subsequently overload the system.

# Conclusion ...

- Concern was the individual characteristics that associated with their cooperation in CBMHSs commitments and
- the relationship between suggested conditions for managing commons and observed outcome in schemes.
- borrowed a conceptual framework from the study of commons-accepting that CBMHSs have features of a CPR
- ► Our data supports most proposals from literature and findings in studies of other commons (e.g. education, trust and higher derived benefits create an impetus for higher cooperation )
- important to support development of good quality local institutional arrangements, promoting more larger plants and bigger groups to increase chances of a positive management outcome
- ► Study provides some insights on potential actions that can improve the survival of community owned RE- replications from other countries are suggested.