Willingness to pay for green electricity

Discrete choice experiment in the Czech households

> Jan V. NOVÁK Milan ŠČASNÝ

Charles University Environmental Center

November 3, 2016 – ECOCEP Conference

Outline

- Motivation
- Green electricity Czech perspective
- WTP theoretical background
- Methods
- Data
- Results
- Discussion

Motivation

Understand consumer preferences for green electricity

green electricity

EU initiatives

- EU 2020 target
 20 % renewable energy use
- EU 2030 target
 27 % renewable energy use
- CZ 2005 6.0 %
- CZ 2014 **13.4 %**
- CZ 2020 target 13.0 %
 -> 15.3 %

(data: Eurostat)

CZ measures

- Investment support (ESI funds – since 2007)
- Feed-in tarrifs/premiums (FIT/FIP since 2005)
 - Purchase of energy for new RE sources
 - Support base was reduced since 2014

green electricity – Czech perspective

- consumer prices include the payment for RES
 - limited up to 495 CZK/MWh (18.3 EUR/MWh)
 - cca 10 % of total electricity bill (2015)
 - paid by both households and companies
- the rest of the costs on public support of RES is funded directly form the state budget (0,6 bln. EUR in 2015)

willingness to pay for green electricity

- WTP max price at which consumer will buy a unit of product
- Stated vs. revealed preferences
 - Hypothetical product (attributes)
- Literature review
 - WTP for RES positive, differs across countries
 - WTP urban > WTP rural, WTP N.Am > WTP Asia
 - WTP values increase over time (Soon, Ahmad 2015)

WTP for green electricity: A Review

ı

Study	Elicitation format	Survey year	Survey country	Sample size	Mean WTP*
Bigerna & Polinori (2011)	Payment card	2007	Italy	1019	10.29
Guo et al. (2014)	SBDC	2010	China	571	3.31
Kim et al. (2013)	DBDC	2010	S. Korea	490	1.44
Kontogianni et al. (2013)	Open-Ended question	2010	Greece	312	17.1
Oliver et al. (2011)	Dichotomous Choice	2008	S. Africa	380	17.06
Soliño et al. (2012)	SBDC	2006	Spain	581	4.18
Solino et al. (2009)	SBDC	2006	Spain	572	6.5
Zhang et al. (2012)	Payment card	2010	China	1139	1.61
Zografakis et al. (2010)	DBDC	2007	Greece	1440	8.27
Zorić et al. (2012)	Dichotomous Choice	2008	Slovenia	450	7.14

DBDC = Double-Bounded Dichotomous Choice; SBDC = Single-Bounded Dichotomous Choice * USD - 2013 base year. Data source: Soon and Ahmad (2015)

relevant attributes and factors

Attributes		Factors	
RES (increase)	+	Household's income	+
Local air quality (increase)	+	Environmental attitude	+
GHG emissions (decrease)	+	Electricity consumption	_
Decentralization	+	Actual local air quality	?
Regional support	?	Age	?

Research question

- How much are Czech customers willing to pay for increasing RES share in electricity supply?
 - Is WTP for 10% share (the SQ) larger than the compulsory payment?
 - Does WTP vary across (dirty/cleaner) regions?
 - Is RES from decentralized source more preferred?
 - Is WTP larger when RES will be supplied mainly to a region where respondent lives?

methods – discrete choice experiment

- choices between discrete alternatives
- attributes of alternatives systematically vary
 - Share of RES
 - Costs
 - Contribution to RES support (total monthly bill) respondent-specific (pivotal design)
 - Other effects
 - > AQ local PM emissions
 - > GHG emissions
 - Region-specific attributes
 - > Who is the beneficiary of public support policy
 - > Where RES will be supplied

preference parameters of utility function are inferred

Choice card - Example

Respondent specific

₳

	-		-	
	Status quo	Alternative B		Alternative C
Monthly expenditures for electricity - including RES contribution	1 500 CZK per month	1 650 CZK per month	14	25 CZK per month
RES contribution - absolute	150 CZK per month	300 CZK per month	75	5 CZK per month
RES contribution -	RES contribution	RES contribution		RES contribution
relative	about 10%	about 20%		about 5%
Local emissions (AQ)	Current level	12% reduction		6% increase
GHG emission from powerplants in CZ	Current level	12% reduction		6% increase
Beneficiaries	All subjects	Municipalities	Region, big companies	
RES contribution collected in my region will be provided	In whole CR	In whole CR	In my region	
Preferred alternative	[]	[X]		[]

DCE attributes

Nested attribute levels

Attribute	Attribute levels			
Monthly expenditures for	10 %, 5 % decrease,			
electricity - including RES	Status quo,			
contribution	5 %, 10 % increase			
	10 %, 5 % decrease,			
RES contribution - absolute	Status quo,			
	5 %, 10 % increase			
RES contribution - relative	0 %, 5 %, 10 %, 15 %, 20 %			
	15 %, 12 %, 9 %, 6 %, 3 % decrease			
Local emissions (AQ)	Status quo			
	3 %, 6 %, 9 %, 12 %, 15 % increase			
GHG emission from	15 %, 12 %, 9 %, 6 %, 3 % decrease			
nowemlants in CZ	Status quo			
powerplants in CZ	3 %, 6 %, 9 %, 12 %, 15 % increase			
Deve Calenta	Households, Municipalities, Regional			
Beneficiaries	companies, National companies, All			
RES contribution collected in	In whole CD, only in my matter			
my region will be provided	in whole CR, only in my region			

- Nested attribute levels
 - RES share >10% (<10%) \rightarrow decrease (increase) in emissions
 - RES share >10% (<10%) → increase (decrease) in costs

preference parameters of utility function

Utility function

 $U = a_1 * RES + a_2 * AQ + a_3 * GHG + a_4 * Beneficiaries + a_5 * Supplied + b * (y - bill) + e$

Conditional logit model (So and Kuhfeld, 1995)

$$P(y_i = j) = P_{ij} = \left[\exp(x'_i \beta_j) / \sum_{k=0}^{J} \exp(x'_i \beta_k) \right] \text{for } j = 0, \dots, J$$

Log-likelihood function

$$L = \sum_{i=1}^{N} \sum_{j \in c_i} d_{ij} ln P(y_i = j)$$

Data

- pilot survey 144 observations -> prior values
 - SW Ngene D-efficient design
- Data collection June 2015, CAWI
- Quota based sampling in two regions
 - Ustecky (polluted), Southern Bohemia (cleaner)
- 80 choice sets 10 blocks, 8 per respondent
- 404 respondents gave us 3,232 choice observations

Data sample statistics

		Total	Ustecky region	S. Bohemia region	Czech Republic
#1	respondents	404	207	197	average
Condon	Male	32%	28%	35%	49%
Gender	Female	68 %	72 %	65 %	51%
	20 - 39	40%	42%	38%	36%
Ago	40 - 59	40%	43%	37%	34%
Age	60 and older	20 %	15%	25%	30%
	average age	45 years	43 years	46 years	49 years
Highest education	Primary school	15%	13%	17%	16%
	Secondary school	55%	60%	50%	70%
	Higher/Bachelor	12%	11%	12%	70%
	Master/Ph.D.	18%	16%	21%	14%
City/willows	less than 1000	13%	12%	15%	
city/village	1000 - 9999	31%	21%	40%	
(inhabitants)	10 000 - 99 999	51%	62%	41%	
(iiiiaonains)	more than 100 000	5%	5%	4%	
Household's net income (CZK/month)		28 354	28 508	28 184	
Electricity bill payment (CZK/month)		1 337	1 203	1 477	
PM 5 year av	10 Emissions - erage (2009 - 2013)	23.47 μg/m3	27.33 μg/m3	19.4 µg/m3	

Results

	Model without interactions				
Variable	В	SE	Approx Pr > t	Sgn	WTP
Electricity bill expenditures	-0.0006	0.0003	0.0513		
Local air quality - LAQ (% decrease)	-0.0304	0.0070	<.0001	**	-49
Global air quality - GAQ (% decrease)	-0.0055	0.0071	0.4444		-9
Type of supported beneficiary (SQ = all)					
Households	0.4213	0.0673	<.0001	**	685
Municipalities	0.2111	0.0690	0.0022	**	343
Regional companies	0.1607	0.0659	0.0148	*	261
National companies	-0.2453	0.0632	0.0001	**	-399
Location of support scheme ($SQ = national$)					
Regional	-0.1016	0.0577	0.0782		-165
Number of observations	3232				
Log Likelihood	-3414				
Likelihood Ratio - 2x(LogL - LogL0)	273				

* - statistically significant at 5 % level

** - statistically significant at 1 % level

Results

	1	Final	model		
Variable	В	SE	Approx Pr > t	Sgn	WTP
Electricity bill expenditures	-0.0007	0.0003	0.0482	*	
Type of supported beneficiary ($SQ = all$)					
Households	0.3905	0.0684	<.0001	**	585
Municipalities	0.1382	0.0713	0.0524		207
Regional companies	0.1046	0.0674	0.1206		157
National companies	-0.2967	0.0646	<.0001	**	-445
Location of support scheme ($SQ = national$)					
Regional	-0.1002	0.0593	0.0910		-150
Interactions					
Income (thousands of CZK) x LAQ	0.0081	0.0027	0.0028	**	12
Missing Income (dummy) x LAQ	-0.0044	0.0243	0.8577		-7
Environmental attitude - middle (dummy) x LAQ	-0.0458	0.0060	<.0001	**	-69
Environmental attitude - high (dummy) x LAQ	-0.1015	0.0076	<.0001	**	-152
Income (thousands of CZK) x GAQ	-0.0141	0.0031	<.0001	**	-21
Missing Income (dummy) x GAQ	-0.0309	0.0245	0.2070		-46
Ustecky region (dummy) x GAQ	0.0287	0.0079	0.0003	**	43
Southern Bohemia region (dummy) x GAQ	0.0356	0.0081	<.0001	**	53
Number of observations	3232				
Log Likelihood	-3304				
Likelihood Ratio - 2x(LogL - LogL0)	492				

* - statistically significant at 5 % level

** - statistically significant at 1 % level

Results Full model Approx B SE Sgn WTP Variable Pr > ItIElectricity bill expenditures -0.0006 0.0003 0.0647 Type of supported beneficiary (SQ = all) Households 0.3894 0.0686 <.0001 ** 617 **Municipalities** 0.1358 0.0714 0.0572 215 **Regional companies** 0.0674 168 0.1061 0.1154 National companies <.0001 -469 -0.2957 0.0646 ** Location of support scheme (SQ = national) Regional -0.1032 0.0594 0.0824 -164 **Interactions** Income (thousands of CZK) x LAQ 0.0119 0.0053 0.0239 * 19 0.0075 12 Missing Income (dummy) x LAQ 0.0295 0.7980 Ustecky region (dummy) x LAQ -0.0885 0.0648 0.1722 -140 0.0489 Southern Bohemia region (dummy) x LAQ 0.3907 -0.0419 -66 Environmental attitude - middle (dummy) x LAQ 0.0364 -0.0382 0.0182 * -61 Environmental attitude - high (dummy) x LAQ -0.0769 0.0220 0.0005 ** -122 Actual household's air quality (decrease) x LAQ 0.0018 0.0022 0.4117 3 Income (thousands of CZK) x GAQ 0.0007 -0.0178 0.0053 ** -28 Missing Income (dummy) x GAQ -0.0428 0.0291 0.1406 -68 Ustecky region (dummy) x GAQ 0.1409 0.0641 0.0279 * 223 Southern Bohemia region (dummy) x GAQ 0.0959 0.0483 0.0469 * 152 Environmental attitude - middle (dummy) x GAQ -0.0067 0.0181 0.7120 -11 Environmental attitude - high (dummy) x GAQ -0.0242 0.0217 0.2659 -38 Actual household's air quality (decrease) x GAQ -0.0028 0.0022 0.2085 -4 Number of observations 3232 Log Likelihood -3299 Likelihood Ratio - 2x(LogL - LogL0) 503

* - statistically significant at 5 % level

** - statistically significant at 1 % level

Results

- WTP for local air quality improvement > > WTP for climate change mitigation (both are positive)
- positive WTP for decentralization
- effect of actual local air quality not significant
- respondents are indifferent over national versus regional support scheme
- sociodemographic characteristics significant (envi. attitude, income..)

Literature

- Bigerna, S., & Polinori, P. (2011). Italian consumers' willingness to pay for renewable energy sources. *University Library of Munich, Germany*.
- Guo, X., Liu, H., Mao, X., Jin, J., Chen, D., & Cheng, S. (2014). Willingness to pay for renewable electricity: A contingent valuation study in Beijing, China. *Energy Policy*, *68*, 340-347
- Kim, J., Park, J., Kim, J., & Heo, E. (2013). Renewable electricity as a differentiated good? The case of the Republic of Korea. *Energy Policy*, *54*, 327-334.
- Kontogianni, A., Tourkolias, C., & Skourtos, M. (2013). Renewables portfolio, individual preferences and social values towards RES technologies. *Energy Policy*, *55*, 467-476.
- Oliver, H., Volschenk, J., & Smit, E. (2011). Residential consumers in the Cape Peninsula's willingness to pay for premium priced green electricity. *Energy Policy*, *39*(2), 544-550.
- So, Y., Kuhfeld, W. F. (1995). Multinomial logit models. In SUGI 20 Conference Proceedings (pp. 1227-1234).
- Soliño, M., Farizo, B. A., Vázquez, M. X., & Prada, A. (2012). Generating electricity with forest biomass: Consistency and payment timeframe effects in choice experiments. *Energy Policy*, *41*, 798-806.
- Solino, M., Vazquez, M. X., & Prada, A. (2009). Social demand for electricity from forest biomass in Spain: Does payment periodicity affect the willingness to pay?. *Energy policy*, *37*(2), 531-540.
- Soon, J. J., & Ahmad, S. A. (2015). Willingly or grudgingly? A meta-analysis on the willingness-to-pay for renewable energy use. *Renewable and Sustainable Energy Reviews*, *44*, 877-887.
- Zhang, L., & Wu, Y. (2012). Market segmentation and willingness to pay for green electricity among urban residents in China: The case of Jiangsu Province. *Energy Policy*, *51*, 514-523.
- Zografakis, N., Sifaki, E., Pagalou, M., Nikitaki, G., Psarakis, V., & Tsagarakis, K. P. (2010). Assessment of public acceptance and willingness to pay for renewable energy sources in Crete. *Renewable and Sustainable Energy Reviews*, *14*(3), 1088-1095.

Zorić, J., & Hrovatin, N. (2012). Household willingness to pay for green electricity in Slovenia. *Energy Policy*, 47, 180-187.

Thank you for attention

Milan Ščasný <u>milan.scasny@czp.cuni.cz</u>

Jan V. Novák jan.novak@fsv.cuni.cz

Charles University Environmental Center

Supported by FP7-PEOPLE-2013-IRSES project ECOCEP n° 609642 and grant n° 368715 awarded by Grant Agency of Charles University.